303 research outputs found

    Experience with Process Modeling in the Marvel Software Development Environment Kernel

    Get PDF
    We have been working for several years on rule-based process modeling and the implementation of such models as part of the foundation for software development environments. We have defined a kernel, called MARVEL, for such an architecture and implemented several successive versions of the kernel and several small environments using the kernel. We have evaluated our results to date, and discovered several significant flaws and delineated several important open problems. Although the details are specific to rule-based process modeling, we believe that our insights will be valuable to other researchers and developers contemplating process modeling mechanisms

    Object-Oriented Programming Language Facilities for Concurrency Control

    Get PDF
    Concurrent object-oriented programming systems require support for concurrency control, to enforce consistent commitment of changes and to support program-initiated rollback after application-specific failures. We have explored three different concurrency control models -- atomic blocks, serializable transactions, and commit-serializable transactions -- as part of the MELD programming language. We present our designs, discuss certain programming problems and implementation issues, and compare our work on MELD to other concurrent object-based systems

    Extending Attribute Grammars to Support Programming-in-the-Large

    Get PDF
    Attribute grammars add specification of static semantic properties to context-free grammars, which in turn describe the syntactic structure of program units. However, context-free grammars cannot express programming-in-the-large features common in modern programming languages, including unordered collections of units, included units and sharing of included units. We present extensions to context-free grammars, and corresponding extensions to attribute grammars, suitable for defining such features. We explain how batch and incremental attribute evaluation algorithms can be adapted to support these extensions, resulting in a uniform approach to intra-unit and inter-unit static semantic analysis and translation of multi-unit programs

    Using Process Technology to Control and Coordinate Software Adaptation

    Get PDF
    We have developed an infrastructure for end-to-end run-time monitoring, behavior/performance analysis, and dynamic adaptation of distributed software. This infrastructure is primarily targeted to pre-existing systems and thus operates outside the target application, without making assumptions about the target's implementation, internal communication/computation mechanisms, source code availability, etc. This paper assumes the existence of the monitoring and analysis components, presented elsewhere, and focuses on the mechanisms used to control and coordinate possibly complex repairs/reconfigurations to the target system. These mechanisms require lower level effectors somehow attached to the target system, so we briefly sketch one such facility (elaborated elsewhere). Our main contribution is the model, architecture, and implementation of Workflakes, the decentralized process engine we use to tailor, control, coordinate, etc. a cohort of such effectors. We have validated the Workflakes approach with case studies in several application domains. Due to space restrictions we concentrate primarily on one case study, briefly discuss a second, and only sketch others

    Metamorphic Runtime Checking of Non-Testable Programs

    Get PDF
    Challenges arise in assuring the quality of applications that do not have test oracles, i.e., for which it is impossible to know what the correct output should be for arbitrary input. Metamorphic testing has been shown to be a simple yet effective technique in addressing the quality assurance of these "non-testable programs". In metamorphic testing, if test input x produces output f(x), specified "metamorphic properties" are used to create a transformation function t, which can be applied to the input to produce t(x); this transformation then allows the output f(t(x)) to be predicted based on the already-known value of f(x). If the output is not as expected, then a defect must exist. Previously we investigated the effectiveness of testing based on metamorphic properties of the entire application. Here, we improve upon that work by presenting a new technique called Metamorphic Runtime Checking, a testing approach that automatically conducts metamorphic testing of individual functions during the program's execution. We also describe an implementation framework called Columbus, and discuss the results of empirical studies that demonstrate that checking the metamorphic properties of individual functions increases the effectiveness of the approach in detecting defects, with minimal performance impact
    • …
    corecore